DSN Progress Report 42-51

March and Apnl 1979

Codes for a Priority Queue on a Parallel Data Bus

D. E. Wallis and H. Taylor
Communications Systems Research Section

The article describes some codes for arbitration of prioritics among subsystenm
computers or peripheral device controllers conneeted 1o a parallel data bus, At arbitration
time, several subsystems present wire-OR, parallel code words to the bus, and the central
computer can not only identify the subsystem of highest priority, but can also detennine
which of two or more transmission services the subsystem requires, The article containg a
mathematical discussion of the optimality of the codes with regard 1o the muniher or
subsystems that may participate in the scheme for a given number of wires, and also the
number of services that each subsyvstem may request,

. Introduction

This article describes some codes for arbitration of priorities
among subsystem computers or peripheral device controtlers
connected to a parallel data bus. At arbitration time, several
subsystems present wire-OR, parallel code words 1o the bus,
and the central computer can not only identify the subsystem
of highest priority, but can also determine which of two or
more transmission services the subsystem requires. This article
contains 2 mathematical discussion of the optimality of the
codes with regard 1o the number of subsystems that may
participate in the scheme for a given number of wires, and also
the number of services that each subsystem may request.

Il. Mathematical Discussion

Consider mr users strung out along a bundle of » wires.
along which they send one of three demands each, to a central
terminal. User § can demand action of, action B, 01 no action.
Each individuat wire carries one bit of information (0 or 1) to
the centeal terminal, mamely, o user's sigral is on that wire or
somte pser s signals are on that wire,

By way of coding we can design a black box for user £, with
buttons «f; and /5, causing two prese clected chuices of signals
for the bundle of wires. Pushing neither button will contribute
the Boolean zero: pushing A, will send one Boolean word oty
bits (not all 0): pushing B, will send another: pushing both .,
and B, at once will be prevented by a mechanical contrivange
inside the black box,

When the system is operating the central terminal s
supposed 1o be able to “understand™ every possible messige it
gets on the bundle of wires, Whatever Boulean word it gets it
must identify the user of top priority in that word, as well as
the demand of that user.

The example in Fig, 1 has users 1.2, 3 ona bundle ot four
wires. Each wire is represented by a column in the figure. For

cach “button™ there is & row representing the Boolean word of

four bits that bunnn will contribute, Thus, if user 3 pushes
hulmn By. user 2 pushes button 4, and user | pushes button

. then the word at central will be w (W = 011 !. and
ul\lr.ll will know that the top priority user 3 is “on™ and
spevifically demanding 85,

To show that the system always works we need an

algorithm w analyze any Boolean word wwyw ey which

14

might appear at the centeal terminal, One such algorithm is
pictured by the decision tree in Fig. 2.

Now more generally we can try for the most efficient
priority queue (PQ) on n wires. In the example of Fig. | we
could handle one more user of higher priority than the others.
allowing him just one button. The scheme in Fig. 3 shows a
wiy of putting # users on n wires, giving two buttons each to
all the tower priority users and one button to the top priority
user,

A clearly defined combinatorial problem arises from the
example scheme of Fig. 3. Under the given conditions, could
any of the users be given more buttons? Arthur Rubin has
given a proof that the answer is “no.” Thus the optimality of
the scheme in Fig. 3 has been proven.

Here is proof (due to Lloyd Welch) that if there are n users,
then there must be at Ieast n wires, and the top priority user
can be given only one button.

We assume. of course, that each user has at least one but-
ton, and say that the users are 1.2, +, n with 1 having top
priority. Consider the following scquence of possibilities.

(1) User 1 (lowest priority) pushes one of his buttons. For
central to know it there must be at least one wire —
let's callit p .

(2) User 1 is on py and user 2 pushes one of user 2's
buttons, There must be another wire py just to tell that
(higher priority) user 2 is demanding something.

(1) User 1 is on Py.ouser Yis on Pyocceuser el s on
P,,.,» and user n pushes one of his buttons. As in cach
previous case, there must be another wire p,, ditterent
from the wires po-o-op, | just to tell central that
user 1 is demanding something.

Finally, the top priority user cannot be given a
second button because that would require yet another
wire different from Pyt and ditterent tfrom
,)

n-1

n’

lll. Application

The IPQ hus been used as an arbitration code for paratiel
arbitration of data-transmission priority mmong multiple users
(subsvstem computersY of an optimized, 23-line, bisdirectional,
digital data /O and control bus connected 1o a central
corputer, '

On this bus. it was desired o time-share the data

tansmissions and the priority arbitrations on the siume wires,

142

The purpose of the arbitration by the central computer was to
identify, from among many subsystems having siimultancous
pending requests for data transmission, that particulir subsys-
tem whose priority was the highest at that instant, Further,
the seenario for use of the data bus identified two actions (or
services) that cach subsystem could request:

(1) Data input (subsystem has read and unloaded s
data-input register, and is ready for next input).

() Data output (subsystems has written and loaded its
data-output register, and is ready to output),

It was then desired to vector these reguests to the central
computer, so that the central computer would not have to
make any further tests to determine the direction (input or
output) of the desired data transmission. [t was evident thi
cconomy of wire usage would require the subsystem computer
to determine, for itself, which direction of transmission was
the more important at a given instant, Then, the subsystem
would make an interrupt request, and would drive the bus
arbitration time with a parallel code word. the reccipt of
which at the computer would be sufficient both to identity
the subsystem and to identify the desired direction of
transmission,

In the bus design. it was desired to arbitrate priorities in a
nanner which was independent of the relative positions of the
various subsystem computers, and the central computer jtselt,
along the bus, il independent of the electrical closeness of
the subsystems o the central computer. Thus, the paratlel,
wire-OR connection for driving the arbitration code words
onto the bus was adopted, 1t then became evident that it
would be desirable 1o maximize the number of users that
could arbitrate simultancously on a fixed number of available
wires. Thus, the combinatorial study of the various possibi-
lities and their degree of optimality was undertaken,

IV.. Conclusion

The number of wires in the data bus is becoming a nujo
cost factor in computer and signalling svstems, and it 1s hugily
desirable to maximize wire utilization, When paratiel arbitra
tion of transmission priorities is used. as tor example on the
Mod Comp' computers of the DSN. more arbitration informa-
tion can be carried on the wires than is presently transmitted.
With 16 data fines and one “request™ line, the Mod Comp

preseatly arbitrates 17 prioritics. with (in the terminology of

this article) one demand per priority, The scheme discussed
here, when applied to the same case (where one wire of the 17
is 4 request™), also permits 17 priorities, while also atTording
o demands (o 13 of these priorities.

Feytod Comp™ i u repistered senvive mark of Modular Computer Sy
teme Ine B Lauderdale, Flonida.,

)

Ay |o]e

%, °

A, .

l' °
-l N | ™M | -
R -AR-AR
Flz|2|2
"1 ™21 %3 1%

Fig. 1. Example of priority code on
four wires with three users and
two actions per user

0

o & i ey

0 1 0

@@i@

1

et hhd

Fig. 2. Declslon tree for decoding tt.a example code glven InFig. 1.

5 D i} . %
AL Ao e A3
5 . i
Ay e A
8
A
Ag [oejoeleje|e
Ay[oeJojo]e
|
:a Ll
3|ojeje| |
|
e, o
Az L] []
, P
A‘ PY

S G S

Flg. 3. Efficlent priority codes that msximize the number of users

onnwires,n=2234°5

143

